
Skip lists (Λίστες παράλειψης)

Data Structures and Programming
Techniques

1

Skip lists

• We will now consider an approach to developing a fast
implementation of symbol-table operations that seems at
first to be completely different from the tree-based
methods that we have been considering, but actually is
closely related to them.

• The approach is based on a randomized data structure
(τυχαιοκρατική ή πιθανοτική δομή δεδομένων) and is
almost certain to provide near-optimal performance for
the basic operations of the symbol table ADT.

• The data structure is called a skip list (λίστα παράλειψης).
It uses extra links in the nodes of a linked list to skip
through large portions of a list at a time during search.

Data Structures and Programming
Techniques

2

Example

Data Structures and Programming
Techniques

3

Notes

• The previous slide shows an example of a skip list where
every third node in an ordered linked list contains an extra
link that allow us to skip three nodes in the list. These
links are called forward links or forward pointers.

• We can use the extra links to speed up search as follows.
• We scan through the top list until we find the key or a node

with a smaller key with a link to a node with a larger key
than the key we are looking for.

• Then use the links at the bottom to check the two
intervening nodes.

• This method speeds up search by a factor of 3, because we
examine only k/3 nodes in a successful search for the k-th
node on the list.

Data Structures and Programming
Techniques

4

Notes (cont’d)

• We can iterate this construction, and provide
a second extra link to be able to scan faster
through nodes with extra links, and so forth.

• Also, we can generalize the construction by
skipping a variable number of nodes with
each link. See the example on the next slide.

Data Structures and Programming
Techniques

5

Example

Data Structures and Programming
Techniques

6

Definition

• A skip list is an ordered linked list where each
node contains a variable number of links
(forward pointers), with the i-th links in the
nodes implementing singly linked lists that
skip the nodes with fewer than i links.

Data Structures and Programming
Techniques

7

Skip list definition

typedef struct STnode* link;

struct STnode

 { Item item; link* next; int sz; };

static link head, z;

static int N, lgN;

Data Structures and Programming
Techniques

8

Notes

• The element next of a skip list node is an array of links (forward
pointers). In other words, each node in a skip list has an array of
next pointers—next[0], next[1], ..., next[k]. Each
next[i] represents a forward link at level i.

• The element sz of a skip list node is the number of links in the
node (depicted as arrows or dots in the figures). This is called the
number of forward levels.

• The field item stores the item of the node of the list.
• The variable N keeps the number of items in the list.
• The variable lgN is the current maximum number of forward

levels in a node of the skip list.
• z is a sentinel node (we will see below how it is used). z is not

shown in the figures. Instead, we see a NULL pointer (a dot).

Data Structures and Programming
Techniques

9

Skip list initialization

void STinit(int max)

 { N = 0;

 lgN = 0;

 z = NEW(maxKey, 0);

 head = NEW(maxKey, max);

 }

Data Structures and Programming
Techniques

10

Skip list initialization (cont’d)

link NEW(Item item, int k)

 { int i;

 link x = malloc(sizeof *x);

 x->next = malloc(k*sizeof(link));

 x->item = item;

 x->sz = k;

 for (i = 0; i < k; i++) x->next[i] = z;

 return x;

 }

Data Structures and Programming
Techniques

11

Skip list initialization (cont’d)

Data Structures and Programming
Techniques

12

item

next[0]

next[1]

next[lgNmax - 2]

next[lgNmax - 1]

z

z

z

z

head

sz

NULLitem

N

lgN

0

0

0 maxKey

next

STNode

Notes

• Nodes in skip lists have an array of links, so NEW needs to allocate
the array and to set the links to the sentinel z.

• The constant lgNmax is the maximum number of forward levels
that we allow in the list. It might be set to 5 for tiny lists, or to 30
for huge lists.

• An empty skip list is a header node with lgNmax links, all set to z,
with N and lgN set to 0.

• In other words, to initialize a skip list, we build a header node with
the maximum number of levels that we will allow in the list, with
pointers at all levels to the sentinel node z.

• For simplicity, we assume that items and keys are the same thing
and both of them are integers.

• The sentinel node z has item/key maxKey which is larger than all
keys in the list (see later how it is used in search).

Data Structures and Programming
Techniques

13

Notes (cont’d)

• Important: Function NEW allocates two
separate memory blocks:

– One for the STnode struct itself via the
statement link x=malloc(sizeof *x);

– One for the dynamic array next via the statement
x->next=malloc(k*sizeof(link));

• We have to be careful therefore when we
delete a node so that space is freed
appropriately.

Data Structures and Programming
Techniques

14

Example

Data Structures and Programming
Techniques

15

Header node

Example: search for key L

Data Structures and Programming
Techniques

16

Searching in skip lists

• To search in a skip list for a given key, we scan through
the top list starting from the header node until we
find the search key or a node that has a link to a next
node with a larger key.

• Then, we move to the second-from-the-top list at the
same node and iterate the same procedure.

• If the next node has a key smaller than the search key
then we continue our search in that node and iterate
the procedure.

• We continue in this way until the search key is found
or a search miss happens at the bottom level.

Data Structures and Programming
Techniques

17

Searching in skip lists

Item searchR(link t, Key v, int k)

 { if (eq(v, key(t->item))) return t->item;

 if (less(v, key(t->next[k]->item)))

 {

 if (k == 0) return NULLitem;

 return searchR(t, v, k-1);

 }

 return searchR(t->next[k], v, k);

 }

Item STsearch(Key v)

 { return searchR(head, v, lgN); }

Data Structures and Programming
Techniques

18

Notes

• For k equal to 0, this code is equivalent to code
for searching in singly linked lists.

• For general k, we move to the next node in the
list on level k if its key is smaller than the search
key and down to level k-1 if its key is not smaller.

• To simplify the code, we assume that all the lists
end with a sentinel node z that has item
NULLitem with key maxKey which is larger
than all keys in the list.

Data Structures and Programming
Techniques

19

Notes (cont’d)

• The previous code is also similar to binary
search or searching in binary search trees:

– We test whether the current node has the search
key.

– Then, if it does not, we compare the key in the
current node with the search key.

– We do one recursive call if it is larger and a
different recursive call if it is smaller.

Data Structures and Programming
Techniques

20

Insertion in skip lists

• The first task that we face when we want to insert
a new node into a skip list is to determine how
many links we want that node to have.

• All the nodes have at least one link.

• We can skip 𝑡 nodes at a time on the second level
if one out of every 𝑡 nodes has two links.

• Iterating, we come to the conclusion that we
want one out of 𝒕𝒋 nodes to have at least 𝒋 + 𝟏
links.

Data Structures and Programming
Techniques

21

Insertion in skip lists (cont’d)

• To make nodes with this property, we randomize, using
a function randX that returns 𝑖 with probability ൗ1

2𝑖.

• Given 𝑖, we create a new node with 𝒊 links and insert
it into the skip list using the same recursive procedure
as we did for search.

• After we have reached level 𝑖 − 1, we link in the new
node each time that we move down a level.

• At that point, we have established that the item in
the current node is less than the search key and links
(on level 𝒊 − 𝟏) to a node that is not less than the
search key.

Data Structures and Programming
Techniques

22

Insertion in skip lists (cont’d)

void insertR(link t, link x, int k)

 { Key v = key(x->item);

 if (less(v, key(t->next[k]->item)))

 {

 if (k < x->sz)

 { x->next[k] = t->next[k];

 t->next[k] = x;

 }

 if (k == 0) return;

 insertR(t, x, k-1); return;

 }

 insertR(t->next[k], x, k);

 }

void STinsert(Key v)

 { insertR(head, NEW(v, randX()), lgN); N++; }

Data Structures and Programming
Techniques

23

Notes

• In the code of the previous slide, insertR is called with
second argument NEW(v, randX()) i.e., a node
created with function NEW which has a random number of
links given by the function randX.

• The function insertR works similarly to searchR.
• When we reach the level k=(x->sz)-1 (we start

counting at 𝟎), we link in the new node each time that we
move down a level.

• This is done by the code inside the second if statement
where t is linked with x which is linked with the node that
used to come after t.

• Moving down a level is done by the recursive call with
third argument k-1 (until k becomes 0).

Data Structures and Programming
Techniques

24

The function randX

• Now we have to define the function randX of
the previous slide so that it generates a
positive integer 𝑖 with probability ൗ1

2𝑖 .

• randX introduces randomness into the data
structure, which ensures good average-case
performance as we will see later.

Data Structures and Programming
Techniques

25

The function randX (cont’d)

int randX()

 { int i, j, t = rand();

 for (i = 1, j = 2; i < lgNmax; i++, j += j)

 if (t > RAND_MAX/j) break;

 if (i > lgN) lgN = i;

 return i;

 }

• Remember:
– The constant lgNmax is the maximum number of levels that we allow in

the list.
– The variable lgN is the current maximum number of levels in a node of

the skip list.

Data Structures and Programming
Techniques

26

The function randX (cont’d)

• Let us explain the details of randX.

• First i, j and t are defined, and t is
assigned a pseudo-random integer in the
interval [0, RAND_MAX] (this is done by

 the call to rand()).

• This means that t is uniformly distributed
over that interval.

Data Structures and Programming
Techniques

27

What Are Pseudo-Random Numbers?

• Pseudo-random numbers are numbers that
appear random, but are actually generated
by a deterministic algorithm.

Data Structures and Programming
Techniques

28

Pseudo-random Numbers

• Pseudo-random numbers have the following
properties:
– Generated by a formula or algorithm. A pseudo-

random number generator (PRNG) uses a math
formula or algorithm to compute the next number in a
sequence based on the previous one (starting from a
seed).

– Deterministic. If you start with the same seed, you
always get the same sequence of numbers.

– Not truly random. In contrast to true randomness
(like radioactive decay or atmospheric noise), PRNGs
are predictable if you know the seed and algorithm.

Data Structures and Programming
Techniques

29

The function randX (cont’d)

• Let us now consider the code
for (i = 1, j = 2; i < lgNmax; i++, j += j)

 if (t > RAND_MAX/j) break;

• We want to assign a level 𝑖 to the new node with probability ൗ1
2𝑖 .

• This is exactly a geometric distribution (with success probability 1/2).

Data Structures and Programming
Techniques

30

The function randX (cont’d)

• Let us now concentrate on the execution of the for loop.

• At level i=1, j=2, we have RAND_MAX/j= RAND_MAX/2. So, the loop
breaks early if t is in the upper half of [0, RAND_MAX]. That happens with
probability ½.

• At level i=2, j=4, we have RAND_MAX/4. So, the loop breaks with
probability ¾ , because t > RAND_MAX/4 happens 75% of the time.

• In general: For level i, the condition t > RAND_MAX/j becomes more likely
as j increases (since the threshold RAND_MAX/j gets smaller).

• So, the loop breaks earlier more often, meaning lower levels are assigned more
often than higher levels.

• Therefore, randX generates a level 𝑖 with probability ൗ1
2𝑖 .

Data Structures and Programming
Techniques

31

Why it Works

This distribution:

• Ensures most nodes have 1 or 2 levels.

• But a few lucky nodes will have many levels
(acting like “express lanes”).

• This randomness balances the skip list
probabilistically, similar to how balancing
works in AVL or red-black trees—but without
rotation logic.

Data Structures and Programming
Techniques

32

Example

• The following slides show the construction of
a skip list for a sample set of keys when
inserted in random order.

Data Structures and Programming
Techniques

33

Example (cont’d)

Data Structures and Programming
Techniques

34

We assume here that in the
case of inserting key E,
randX() returned 2.
Therefore, x->sz is 2. So,
when we reach level
(x->sz)-1 (i.e., 1), we
link the new node with the
next one and again when k
reaches 0.

The remaining insertions are
similar.

This first step can be a
bit misleading. In the
example, lgNmax is 3
but in the first list, the
header node is shown
with one forward
pointer only. It should
have been drawn with
three forward pointers
as in the second and
subsequent steps.

Example (cont’d)

Data Structures and Programming
Techniques

35

Proposition

• Search and insertion in a randomized skip list
with parameter 𝑡 require about

(𝑡 log𝑡 𝑁)

2
=

𝑡

2 log2 𝑡
log2 𝑁

 comparisons, on the average.

• Proof omitted.

• Note: in the code presented earlier, we used 𝑡 =
2.

Data Structures and Programming
Techniques

36

Proposition

• Skip lists have Τ𝑡
𝑡−1 𝑁 links on the average.

• Proof omitted.

Data Structures and Programming
Techniques

37

Deletion in skip lists

• The next slide presents an implementation of
the delete function, using the same recursive
scheme that we used for insert.

• This process involves:

– Unlinking the node from the lists at each level
where we linked it during insertion.

– Freeing the node after unlinking it from the
bottom list (as opposed to creating it with NEW
before traversing the link for insert).

Data Structures and Programming
Techniques

38

Deletion in skip lists (cont’d)

void deleteR(link t, Key v, int k)

 { link x = t->next[k];

 if (!less(key(x->item), v))

 {

 if (eq(v, key(x->item)))

 { t->next[k] = x->next[k]; }

 if (k == 0) { free(x->next); free(x); return; }

 deleteR(t, v, k-1); return;

 }

 deleteR(t->next[k], v, k);

 }

void STdelete(Key v)

 { deleteR(head, v, lgN); N--; }

Data Structures and Programming
Techniques

39

Deletion in skip lists (cont’d)

• The unlinking at each level is done by the
statement

 t->next[k] = x->next[k];

• Freeing the space occupied by the node needs
two free statements:

– One for the dynamic array of forward pointers
(free(x->next);)

– One for the STNode struct (free(x);)

Data Structures and Programming
Techniques

40

Deletion in skip lists (cont’d)

• Note also the use of !less(...) in
delete. It ensures that:

– We don't keep skipping past the node we want to
delete.

– We stop if the next node has a key equal to or
greater than the key to delete.

– Only if it’s exactly equal, we delete it.

Data Structures and Programming
Techniques

41

Deletion in skip lists (cont’d)

• Finally, note that the version of deletion we
presented does not check for the case that the
key to be deleted is not in the list.

• The function on the next slide solves this
issue.

Data Structures and Programming
Techniques

42

Deletion in skip lists (cont’d)

// Public interface that adjusts N only if delete

succeeded

void STdelete(Key v) {

 if (deleteR(head, v, lgN)) {

 N--;

 printf("Key %d deleted successfully.\n", v);

 } else {

 printf("Key %d not found. No deletion

performed.\n", v);

 }

}

Data Structures and Programming
Techniques

43

Deletion in skip lists (cont’d)

// Recursive delete now returns 1 if deletion occurred, 0 otherwise

int deleteR(link t, Key v, int k) {

 link x = t->next[k];

 if (!less(key(x->item), v)) { // i.e., if key(x) >= v

 if (eq(v, key(x->item))) {

 t->next[k] = x->next[k]; // unlink at this level

 if (k == 0) {

 free(x->next); // clean up memory

 free(x);

 return 1; // deletion successful

 }

 }

 return deleteR(t, v, k - 1); // go down a level

 }

 return deleteR(t->next[k], v, k); // move forward

}

Data Structures and Programming
Techniques

44

Example: delete H

Data Structures and Programming
Techniques

45

Please ignore the gray
shading after node H. We
have found H, so we
don’t need to move
further.

Complete program

• Let us now write a complete C program that
implements linked lists and has a main that:

– Inserts the keys 10, 12, 7, 8 and 9 in the list

– Searches for keys 7 and 8 (does not exist).

– Deletes the keys 7 and 8 (does not exist!) in the
list.

– Prints appropriate messages in each case.

Data Structures and Programming
Techniques

46

Complete program

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define lgNmax 10

#define NULLitem -1

#define maxKey 9999

typedef int Item;

typedef int Key;

typedef struct STnode *link;

struct STnode {

 Item item;

 link* next;

 int sz;

};

static link head, z;

static int N, lgN;

Data Structures and Programming
Techniques

47

Complete program (cont’d)

Key key(Item item) {

 return item;

}

int eq(Key a, Key b) {

 return a == b;

}

int less(Key a, Key b) {

 return a < b;

}

Data Structures and Programming
Techniques

48

Complete program (cont’d)

link NEW(Item item, int k) {

 link x = malloc(sizeof(*x));

 x->next = malloc(k * sizeof(link));

 x->item = item;

 x->sz = k;

 for (int i = 0; i < k; i++) x->next[i] = z;

 return x;

}

void STinit(int max) {

 N = 0;

 lgN = 0;

 z = NEW(maxKey, 0);

 head = NEW(maxKey, lgNmax);

}

Data Structures and Programming
Techniques

49

Complete program (cont’d)

int randX() {

 int i, j, t = rand();

 for (i = 1, j = 2; i < lgNmax; i++, j +=

j)

 if (t > RAND_MAX / j) break;

 if (i > lgN) lgN = i;

 return i;

}

Data Structures and Programming
Techniques

50

Complete program (cont’d)

Item searchR(link t, Key v, int k) {

 if (eq(v, key(t->item))) return t->item;

 if (less(v, key(t->next[k]->item))) {

 if (k == 0) return NULLitem;

 return searchR(t, v, k - 1);

 }

 return searchR(t->next[k], v, k);

}

Item STsearch(Key v) {

 return searchR(head, v, lgN);

}

Data Structures and Programming
Techniques

51

Complete program (cont’d)

void insertR(link t, link x, int k) {

 Key v = key(x->item);

 if (less(v, key(t->next[k]->item))) {

 if (k < x->sz) {

 x->next[k] = t->next[k];

 t->next[k] = x;

 }

 if (k == 0) return;

 insertR(t, x, k - 1);

 return;

 }

 insertR(t->next[k], x, k);

}

void STinsert(Key v) {

 insertR(head, NEW(v, randX()), lgN);

 N++;

}

Data Structures and Programming
Techniques

52

Complete program (cont’d)

// Safe delete: only free and decrement N if item is found

int deleteR(link t, Key v, int k) {

 link x = t->next[k];

 if (!less(key(x->item), v)) {

 if (eq(v, key(x->item))) {

 t->next[k] = x->next[k];

 if (k == 0) {

 free(x->next);

 free(x);

 return 1; // successfully deleted

 }

 }

 return deleteR(t, v, k - 1);

 }

 return deleteR(t->next[k], v, k);

}

void STdelete(Key v) {

 if (deleteR(head, v, lgN)) {

 N--;

 printf("Key %d deleted successfully.\n", v);

 } else {

 printf("Key %d not found. No deletion performed.\n", v);

 }

}

Data Structures and Programming
Techniques

53

Complete program (cont’d)
// Main demo

int main() {

 srand(time(NULL));

 STinit(lgNmax);

 int keys[] = {10, 12, 7, 8, 9};

 printf("Inserting keys:\n");

 for (int i = 0; i < 5; i++) {

 printf("- %d\n", keys[i]);

 STinsert(keys[i]);

 }

 printf("\nSearching for key 7:\n");

 if (STsearch(7) != NULLitem)

 printf("Key 7 found in skip list.\n");

 else

 printf("Key 7 not found in skip list.\n");

 printf("\nSearching for key 8:\n");

 if (STsearch(8) != NULLitem)

 printf("Key 8 found in skip list.\n");

 else

 printf("Key 8 not found in skip list.\n");

 printf("\nDeleting key 7:\n");

 STdelete(7);

 printf("Deleting key 8:\n");

 STdelete(8);

 return 0;

}

Data Structures and Programming
Techniques

54

srand(time(NULL));

• Notice the above statement in the main
function.

• What does it do?

Data Structures and Programming
Techniques

55

rand() and Reproducibility

• In C, rand() generates pseudo-random
numbers.

• By default, if you call rand() without doing
anything else, you'll get the same sequence of
numbers every time your program runs.

• This happens because rand() uses a seed
value internally to start its sequence — and if
you don’t set it, it uses the same default seed
every time.

Data Structures and Programming
Techniques

56

What srand() Does

• srand() sets the seed for the rand()
function.

• Think of the seed as the "starting point" of the
random number sequence.

• If you set the same seed, you'll get the same
sequence of random numbers.

Data Structures and Programming
Techniques

57

So Why time(NULL)?

• time(NULL) returns the current time in
seconds since the Unix epoch (January 1,
1970).

• This value is (almost) always different each
time you run the program.

• This makes your skip list insertions (and
random levels) unpredictable and different on
each run, which is ideal for simulating real-
world behavior.

Data Structures and Programming
Techniques

58

Skip lists vs. (2,4) trees

• Although skip lists are easy to conceptualize as
a systematic way to move quickly through a
linked list, it is also important to understand
that the underlying data structure is nothing
more than an alternative representation of a
balanced tree.

• For example, the next two slides show a (2,4)
tree and an equivalent skip list representation.

Data Structures and Programming
Techniques

59

(2,4) tree

Data Structures and Programming
Techniques

60

An equivalent skip list

Data Structures and Programming
Techniques

61

Readings

• The material in the present slides comes
verbatim from the following source:

– R. Sedgewick. Αλγόριθμοι σε C. 3η Αμερικανική
Έκδοση. Εκδόσεις Κλειδάριθμος.

• Κεφάλαιο 13.5

Data Structures and Programming
Techniques

62

	Slide 1: Skip lists (Λίστες παράλειψης)
	Slide 2: Skip lists
	Slide 3: Example
	Slide 4: Notes
	Slide 5: Notes (cont’d)
	Slide 6: Example
	Slide 7: Definition
	Slide 8: Skip list definition
	Slide 9: Notes
	Slide 10: Skip list initialization
	Slide 11: Skip list initialization (cont’d)
	Slide 12: Skip list initialization (cont’d)
	Slide 13: Notes
	Slide 14: Notes (cont’d)
	Slide 15: Example
	Slide 16: Example: search for key L
	Slide 17: Searching in skip lists
	Slide 18: Searching in skip lists
	Slide 19: Notes
	Slide 20: Notes (cont’d)
	Slide 21: Insertion in skip lists
	Slide 22: Insertion in skip lists (cont’d)
	Slide 23: Insertion in skip lists (cont’d)
	Slide 24: Notes
	Slide 25: The function randX
	Slide 26: The function randX (cont’d)
	Slide 27: The function randX (cont’d)
	Slide 28: What Are Pseudo-Random Numbers?
	Slide 29: Pseudo-random Numbers
	Slide 30: The function randX (cont’d)
	Slide 31: The function randX (cont’d)
	Slide 32: Why it Works
	Slide 33: Example
	Slide 34: Example (cont’d)
	Slide 35: Example (cont’d)
	Slide 36: Proposition
	Slide 37: Proposition
	Slide 38: Deletion in skip lists
	Slide 39: Deletion in skip lists (cont’d)
	Slide 40: Deletion in skip lists (cont’d)
	Slide 41: Deletion in skip lists (cont’d)
	Slide 42: Deletion in skip lists (cont’d)
	Slide 43: Deletion in skip lists (cont’d)
	Slide 44: Deletion in skip lists (cont’d)
	Slide 45: Example: delete H
	Slide 46: Complete program
	Slide 47: Complete program
	Slide 48: Complete program (cont’d)
	Slide 49: Complete program (cont’d)
	Slide 50: Complete program (cont’d)
	Slide 51: Complete program (cont’d)
	Slide 52: Complete program (cont’d)
	Slide 53: Complete program (cont’d)
	Slide 54: Complete program (cont’d)
	Slide 55: srand(time(NULL));
	Slide 56: rand() and Reproducibility
	Slide 57: What srand() Does
	Slide 58: So Why time(NULL)?
	Slide 59: Skip lists vs. (2,4) trees
	Slide 60: (2,4) tree
	Slide 61: An equivalent skip list
	Slide 62: Readings

